Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The stoichiometry of the two photosystems in higher plants revisited.

Identifieur interne : 003A49 ( Main/Exploration ); précédent : 003A48; suivant : 003A50

The stoichiometry of the two photosystems in higher plants revisited.

Auteurs : Da-Yong Fan [Australie] ; Alexander B. Hope ; Paul J. Smith ; Husen Jia ; Ronald J. Pace ; Jan M. Anderson ; Wah Soon Chow

Source :

RBID : pubmed:17618597

Descripteurs français

English descriptors

Abstract

The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.

DOI: 10.1016/j.bbabio.2007.06.001
PubMed: 17618597


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The stoichiometry of the two photosystems in higher plants revisited.</title>
<author>
<name sortKey="Fan, Da Yong" sort="Fan, Da Yong" uniqKey="Fan D" first="Da-Yong" last="Fan">Da-Yong Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Photobioenergetics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Photobioenergetics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200</wicri:regionArea>
<wicri:noRegion>ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hope, Alexander B" sort="Hope, Alexander B" uniqKey="Hope A" first="Alexander B" last="Hope">Alexander B. Hope</name>
</author>
<author>
<name sortKey="Smith, Paul J" sort="Smith, Paul J" uniqKey="Smith P" first="Paul J" last="Smith">Paul J. Smith</name>
</author>
<author>
<name sortKey="Jia, Husen" sort="Jia, Husen" uniqKey="Jia H" first="Husen" last="Jia">Husen Jia</name>
</author>
<author>
<name sortKey="Pace, Ronald J" sort="Pace, Ronald J" uniqKey="Pace R" first="Ronald J" last="Pace">Ronald J. Pace</name>
</author>
<author>
<name sortKey="Anderson, Jan M" sort="Anderson, Jan M" uniqKey="Anderson J" first="Jan M" last="Anderson">Jan M. Anderson</name>
</author>
<author>
<name sortKey="Chow, Wah Soon" sort="Chow, Wah Soon" uniqKey="Chow W" first="Wah Soon" last="Chow">Wah Soon Chow</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17618597</idno>
<idno type="pmid">17618597</idno>
<idno type="doi">10.1016/j.bbabio.2007.06.001</idno>
<idno type="wicri:Area/Main/Corpus">003B17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003B17</idno>
<idno type="wicri:Area/Main/Curation">003B17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003B17</idno>
<idno type="wicri:Area/Main/Exploration">003B17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The stoichiometry of the two photosystems in higher plants revisited.</title>
<author>
<name sortKey="Fan, Da Yong" sort="Fan, Da Yong" uniqKey="Fan D" first="Da-Yong" last="Fan">Da-Yong Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Photobioenergetics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Photobioenergetics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200</wicri:regionArea>
<wicri:noRegion>ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hope, Alexander B" sort="Hope, Alexander B" uniqKey="Hope A" first="Alexander B" last="Hope">Alexander B. Hope</name>
</author>
<author>
<name sortKey="Smith, Paul J" sort="Smith, Paul J" uniqKey="Smith P" first="Paul J" last="Smith">Paul J. Smith</name>
</author>
<author>
<name sortKey="Jia, Husen" sort="Jia, Husen" uniqKey="Jia H" first="Husen" last="Jia">Husen Jia</name>
</author>
<author>
<name sortKey="Pace, Ronald J" sort="Pace, Ronald J" uniqKey="Pace R" first="Ronald J" last="Pace">Ronald J. Pace</name>
</author>
<author>
<name sortKey="Anderson, Jan M" sort="Anderson, Jan M" uniqKey="Anderson J" first="Jan M" last="Anderson">Jan M. Anderson</name>
</author>
<author>
<name sortKey="Chow, Wah Soon" sort="Chow, Wah Soon" uniqKey="Chow W" first="Wah Soon" last="Chow">Wah Soon Chow</name>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta</title>
<idno type="ISSN">0006-3002</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cucumis sativus (chemistry)</term>
<term>Cucumis sativus (metabolism)</term>
<term>Light (MeSH)</term>
<term>Light-Harvesting Protein Complexes (chemistry)</term>
<term>Light-Harvesting Protein Complexes (metabolism)</term>
<term>Membrane Potentials (physiology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Photosystem I Protein Complex (chemistry)</term>
<term>Photosystem I Protein Complex (metabolism)</term>
<term>Photosystem II Protein Complex (chemistry)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Spinacia oleracea (chemistry)</term>
<term>Spinacia oleracea (metabolism)</term>
<term>Thylakoids (chemistry)</term>
<term>Thylakoids (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe protéique du photosystème I (composition chimique)</term>
<term>Complexe protéique du photosystème I (métabolisme)</term>
<term>Complexe protéique du photosystème II (composition chimique)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>Complexes collecteurs de lumière (composition chimique)</term>
<term>Complexes collecteurs de lumière (métabolisme)</term>
<term>Cucumis sativus (composition chimique)</term>
<term>Cucumis sativus (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Potentiels de membrane (physiologie)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Spinacia oleracea (composition chimique)</term>
<term>Spinacia oleracea (métabolisme)</term>
<term>Thylacoïdes (composition chimique)</term>
<term>Thylacoïdes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Light-Harvesting Protein Complexes</term>
<term>Photosystem I Protein Complex</term>
<term>Photosystem II Protein Complex</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cucumis sativus</term>
<term>Spinacia oleracea</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Complexe protéique du photosystème I</term>
<term>Complexe protéique du photosystème II</term>
<term>Complexes collecteurs de lumière</term>
<term>Cucumis sativus</term>
<term>Protéines végétales</term>
<term>Spinacia oleracea</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cucumis sativus</term>
<term>Light-Harvesting Protein Complexes</term>
<term>Oxygen</term>
<term>Photosystem I Protein Complex</term>
<term>Photosystem II Protein Complex</term>
<term>Plant Proteins</term>
<term>Spinacia oleracea</term>
<term>Thylakoids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe protéique du photosystème I</term>
<term>Complexe protéique du photosystème II</term>
<term>Complexes collecteurs de lumière</term>
<term>Cucumis sativus</term>
<term>Oxygène</term>
<term>Protéines végétales</term>
<term>Spinacia oleracea</term>
<term>Thylacoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Potentiels de membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Membrane Potentials</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Oxidation-Reduction</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Lumière</term>
<term>Oxydoréduction</term>
<term>Photosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17618597</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3002</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1767</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2007</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta</Title>
<ISOAbbreviation>Biochim Biophys Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>The stoichiometry of the two photosystems in higher plants revisited.</ArticleTitle>
<Pagination>
<MedlinePgn>1064-72</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Da-Yong</ForeName>
<Initials>DY</Initials>
<AffiliationInfo>
<Affiliation>Photobioenergetics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hope</LastName>
<ForeName>Alexander B</ForeName>
<Initials>AB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Paul J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Husen</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pace</LastName>
<ForeName>Ronald J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Jan M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chow</LastName>
<ForeName>Wah Soon</ForeName>
<Initials>WS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta</MedlineTA>
<NlmUniqueID>0217513</NlmUniqueID>
<ISSNLinking>0006-3002</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045342">Light-Harvesting Protein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045331">Photosystem I Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018553" MajorTopicYN="N">Cucumis sativus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045342" MajorTopicYN="N">Light-Harvesting Protein Complexes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008564" MajorTopicYN="N">Membrane Potentials</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045331" MajorTopicYN="N">Photosystem I Protein Complex</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018724" MajorTopicYN="N">Spinacia oleracea</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020524" MajorTopicYN="N">Thylakoids</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17618597</ArticleId>
<ArticleId IdType="pii">S0005-2728(07)00132-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbabio.2007.06.001</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Anderson, Jan M" sort="Anderson, Jan M" uniqKey="Anderson J" first="Jan M" last="Anderson">Jan M. Anderson</name>
<name sortKey="Chow, Wah Soon" sort="Chow, Wah Soon" uniqKey="Chow W" first="Wah Soon" last="Chow">Wah Soon Chow</name>
<name sortKey="Hope, Alexander B" sort="Hope, Alexander B" uniqKey="Hope A" first="Alexander B" last="Hope">Alexander B. Hope</name>
<name sortKey="Jia, Husen" sort="Jia, Husen" uniqKey="Jia H" first="Husen" last="Jia">Husen Jia</name>
<name sortKey="Pace, Ronald J" sort="Pace, Ronald J" uniqKey="Pace R" first="Ronald J" last="Pace">Ronald J. Pace</name>
<name sortKey="Smith, Paul J" sort="Smith, Paul J" uniqKey="Smith P" first="Paul J" last="Smith">Paul J. Smith</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Fan, Da Yong" sort="Fan, Da Yong" uniqKey="Fan D" first="Da-Yong" last="Fan">Da-Yong Fan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A49 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A49 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17618597
   |texte=   The stoichiometry of the two photosystems in higher plants revisited.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17618597" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020